Automated machine learning in practice: state of the art and recent results L Tuggener, M Amirian, K Rombach, S Lörwald, A Varlet, C Westermann, ... 2019 6th Swiss Conference on Data Science (SDS), 31-36, 2019 | 109 | 2019 |
Deepscores-a dataset for segmentation, detection and classification of tiny objects L Tuggener, I Elezi, J Schmidhuber, M Pelillo, T Stadelmann 2018 24th International Conference on Pattern Recognition (ICPR), 3704-3709, 2018 | 55 | 2018 |
Deep watershed detector for music object recognition L Tuggener, I Elezi, J Schmidhuber, T Stadelmann arXiv preprint arXiv:1805.10548, 2018 | 54 | 2018 |
Deep learning in the wild T Stadelmann, M Amirian, I Arabaci, M Arnold, GF Duivesteijn, I Elezi, ... Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop …, 2018 | 44 | 2018 |
Is it enough to optimize CNN architectures on ImageNet? L Tuggener, J Schmidhuber, T Stadelmann Frontiers in Computer Science 4, 1041703, 2022 | 31 | 2022 |
The DeepScoresV2 dataset and benchmark for music object detection L Tuggener, YP Satyawan, A Pacha, J Schmidhuber, T Stadelmann 2020 25th International Conference on Pattern Recognition (ICPR), 9188-9195, 2021 | 26 | 2021 |
Design patterns for resource-constrained automated deep-learning methods L Tuggener, M Amirian, F Benites, P von Däniken, P Gupta, FP Schilling, ... AI 1 (4), 510-538, 2020 | 8 | 2020 |
Two to trust: Automl for safe modelling and interpretable deep learning for robustness M Amirian, L Tuggener, R Chavarriaga, YP Satyawan, FP Schilling, ... Trustworthy AI-Integrating Learning, Optimization and Reasoning: First …, 2021 | 6 | 2021 |
Real world music object recognition L Tuggener, R Emberger, A Ghosh, P Sager, YP Satyawan, J Montoya, ... Transactions of the International Society for Music Information Retrieval 7 …, 2024 | 5 | 2024 |
Deep watershed detector for music object recognition. arXiv 2018 L Tuggener, I Elezi, J Schmidhuber, T Stadelmann arXiv preprint arXiv:1805.10548, 2018 | 5 | 2018 |
DeepScores and Deep Watershed Detection: current state and open issues I Elezi, L Tuggener, M Pelillo, T Stadelmann arXiv preprint arXiv:1810.05423, 2018 | 4 | 2018 |
So you want your private LLM at home?: a survey and benchmark of methods for efficient GPTs L Tuggener, P Sager, Y Taoudi-Benchekroun, BF Grewe, T Stadelmann 11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 …, 2024 | 3 | 2024 |
Efficient deep CNNs for cross-modal automated computer vision under time and space constraints M Amirian, K Rombach, L Tuggener, FP Schilling, T Stadelmann ECML-PKDD 2019, Würzburg, Germany, 16-19 September 2019, 2019 | 3 | 2019 |
Video object detection for privacy-preserving patient monitoring in intensive care R Emberger, JM Boss, D Baumann, M Seric, S Huo, L Tuggener, E Keller, ... 2023 10th IEEE Swiss Conference on Data Science (SDS), 85-88, 2023 | 2 | 2023 |
Efficient rotation invariance in deep neural networks through artificial mental rotation L Tuggener, T Stadelmann, J Schmidhuber arXiv preprint arXiv:2311.08525, 2023 | 1 | 2023 |
Natürliche und künstliche Intelligenz: Ein kritischer Vergleich G Roth, L Tuggener, FC Roth Springer-Verlag, 2024 | | 2024 |
Intelligenzleistungen bei nichtmenschlichen Tieren G Roth, L Tuggener, FC Roth Natürliche und künstliche Intelligenz, 17-67, 2024 | | 2024 |
Künstliche Intelligenz G Roth, L Tuggener, FC Roth Natürliche und künstliche Intelligenz, 131-200, 2024 | | 2024 |
Wie geht unsere Gesellschaft mit den KI-Systemen um? G Roth, L Tuggener, FC Roth Natürliche und künstliche Intelligenz, 211-216, 2024 | | 2024 |
Neurobiologische Grundlagen kognitiver Leistungen G Roth, L Tuggener, FC Roth Natürliche und künstliche Intelligenz, 69-130, 2024 | | 2024 |