Differential properties of sinkhorn approximation for learning with wasserstein distance G Luise, A Rudi, M Pontil, C Ciliberto Advances in Neural Information Processing Systems 31, 2018 | 149 | 2018 |
On over-squashing in message passing neural networks: The impact of width, depth, and topology F Di Giovanni, L Giusti, F Barbero, G Luise, P Lio, MM Bronstein International Conference on Machine Learning, 7865-7885, 2023 | 114 | 2023 |
A non-asymptotic analysis for Stein variational gradient descent A Korba, A Salim, M Arbel, G Luise, A Gretton Advances in Neural Information Processing Systems 33, 4672-4682, 2020 | 95 | 2020 |
Sinkhorn barycenters with free support via frank-wolfe algorithm G Luise, S Salzo, M Pontil, C Ciliberto Advances in neural information processing systems 32, 2019 | 76 | 2019 |
Exploiting mmd and sinkhorn divergences for fair and transferable representation learning L Oneto, M Donini, G Luise, C Ciliberto, A Maurer, M Pontil Advances in Neural Information Processing Systems 33, 15360-15370, 2020 | 59 | 2020 |
The Wasserstein proximal gradient algorithm A Salim, A Korba, G Luise Advances in Neural Information Processing Systems 33, 12356-12366, 2020 | 56 | 2020 |
Meta optimal transport B Amos, S Cohen, G Luise, I Redko arXiv preprint arXiv:2206.05262, 2022 | 29 | 2022 |
Heterogeneous manifolds for curvature-aware graph embedding F Di Giovanni, G Luise, M Bronstein arXiv preprint arXiv:2202.01185, 2022 | 27 | 2022 |
Generalization properties of optimal transport GANs with latent distribution learning G Luise, M Pontil, C Ciliberto arXiv preprint arXiv:2007.14641, 2020 | 26 | 2020 |
Aligning time series on incomparable spaces S Cohen, G Luise, A Terenin, B Amos, M Deisenroth International conference on artificial intelligence and statistics, 1036-1044, 2021 | 18 | 2021 |
Leveraging low-rank relations between surrogate tasks in structured prediction G Luise, D Stamos, M Pontil, C Ciliberto International Conference on Machine Learning, 4193-4202, 2019 | 14 | 2019 |
’, and Michael Bronstein F Di Giovanni, L Giusti, F Barbero, G Luise, P Lio On over-squashing in message passing neural networks: The impact of width …, 2023 | 12 | 2023 |
Contraction and regularizing properties of heat flows in metric measure spaces G Luise, G Savaré arXiv preprint arXiv:1904.09825, 2019 | 11 | 2019 |
Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition P Festor, G Luise, M Komorowski, AA Faisal arXiv preprint arXiv:2109.07827, 2021 | 10 | 2021 |
Schedule-robust online continual learning R Wang, M Ciccone, G Luise, A Yapp, M Pontil, C Ciliberto arXiv preprint arXiv:2210.05561, 2022 | 3 | 2022 |
Entropic Optimal Transport in Machine Learning: applications to distributional regression, barycentric estimation and probability matching G Luise UCL (University College London), 2021 | 2 | 2021 |
Bag of Policies for Distributional Deep Exploration A Nachkov, L Li, G Luise, F Valdettaro, AA Faisal International Workshop on Epistemic Uncertainty in Artificial Intelligence …, 2023 | | 2023 |
Contraction and regularizing effects for Markov semigroups in Hellinger and Hellinger-Kantorovich spaces G LUISE | | 2015 |
Detecting Spatiotemporal Lightning Patterns: An Unsupervised Graph-Based Approach E Benjaminson, S Praveen, G Luise, JE Johnson, R Strange, ... | | |