Transcriptome-guided drug repositioning A Arakelyan, L Nersisyan, M Nikoghosyan, S Hakobyan, A Simonyan, ... Pharmaceutics 11 (12), 677, 2019 | 20 | 2019 |
Population levels assessment of the distribution of disease-associated variants with emphasis on armenians–a machine learning approach M Nikoghosyan, S Hakobyan, A Hovhannisyan, H Loeffler-Wirth, H Binder, ... Frontiers in genetics 10, 394, 2019 | 17 | 2019 |
WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene L Nersisyan, M Nikoghosyan, A Arakelyan Scientific Reports 9 (1), 18758, 2019 | 14 | 2019 |
SOMmelier—Intuitive visualization of the topology of grapevine genome landscapes using artificial neural networks M Nikoghosyan, M Schmidt, K Margaryan, H Loeffler-Wirth, A Arakelyan, ... Genes 11 (7), 817, 2020 | 13 | 2020 |
Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers A Arakelyan, A Melkonyan, S Hakobyan, U Boyarskih, A Simonyan, ... International Journal of Molecular Sciences 22 (3), 1266, 2021 | 11 | 2021 |
Molecular analysis of SARS-COV-2 lineages in Armenia D Avetyan, S Hakobyan, M Nikoghosyan, L Ghukasyan, G Khachatryan, ... Viruses 14 (5), 1074, 2022 | 6 | 2022 |
Projection of high-dimensional genome-wide expression on SOM transcriptome landscapes M Nikoghosyan, H Loeffler-Wirth, S Davidavyan, H Binder, A Arakelyan BioMedInformatics 2 (1), 62-76, 2021 | 6 | 2021 |
Machine learning extracts marks of thiamine’s role in cold acclimation in the transcriptome of Vitis vinifera T Konecny, M Nikoghosyan, H Binder Frontiers in Plant Science 14, 1303542, 2023 | 2 | 2023 |
Molecular genetic analysis of SARS-CoV-2 lineages in Armenia D Avetyan, S Hakobyan, M Nikoghosyan, G Khachatryan, T Sirunyan, ... medRxiv, 2021.06. 19.21259172, 2021 | 1 | 2021 |
Unveiling Iso-and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning T Konecny, A Asatryan, M Nikoghosyan, H Binder Plants 13 (17), 2501, 2024 | | 2024 |
Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses 2022, 14, 1074 D Avetyan, S Hakobyan, M Nikoghosyan, L Ghukasyan, G Khachatryan, ... s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022 | | 2022 |
PREDICTION THE RISK OF DEVELOPMENT FOR SCHIZOPHRENIA IN ARMENIAN AND JEWISH ASHKENAZI POPULATION, USING MACHINE LEARNING APPROACHES S Davitavyan, M Nikoghosyan, A Arakelyan ПЯТНАДЦАТАЯ ГОДИЧНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ= ՏԱՍՆՀԻՆԳԵՐՈՐԴ ՏԱՐԵԿԱՆ ԳԻՏԱԺՈՂՈՎ …, 2022 | | 2022 |
TRANSCRIPTOME-BASED BIOLOGICS REPOSITIONING USING MACHINE LEARNING APPROACHES A Arakelyan, L Nersisyan, M Nikoghosyan, S Hakobyan, H Loffer-Wirth, ... Генетика-фундаментальная основа инноваций в медицине и селекции, 3-3, 2019 | | 2019 |
Arsen Arakelyan A Arakelyan, L Nersisyan, M Nikoghosyan, S Hakobyan, T Mkrtchyan Director 374 (10), 282622, 2004 | | 2004 |
TMM genes A Arakelyan, L Nersisyan, M Nikoghosyan, S Hakobyan, T Mkrtchyan | | |
PREDICTION THE RISK OF DEVELOPMENT FOR SCHIZOPHRENIA IN JEWISH ASHKENAZI POPULATION, USING MACHINE LEARNING APPROACHES S Davitavyan, M Nikoghosyan, A Arakelyan СТУДЕНЧЕСКАЯ ГОДИЧНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ 2021г., 53, 0 | | |
Prediction the Risk of Development for Schizophrenia and Bipolar Disorders in Different Populations, Using Machine Learning Approaches S Davitavyan, M Nikoghosyan, A Arakelyan Editors: Dr. Hovhannisyan A., 45, 0 | | |