The shapley value in machine learning B Rozemberczki, L Watson, P Bayer, HT Yang, O Kiss, S Nilsson, ... arXiv preprint arXiv:2202.05594, 2022 | 52 | 2022 |
On the importance of difficulty calibration in membership inference attacks L Watson, C Guo, G Cormode, A Sablayrolles arXiv preprint arXiv:2111.08440, 2021 | 25 | 2021 |
Combining Generative Artificial Intelligence (AI) and the Internet: Heading towards Evolution or Degradation? G Martínez, L Watson, P Reviriego, JA Hernández, M Juarez, R Sarkar arXiv preprint arXiv:2303.01255, 2023 | 1 | 2023 |
Stability enhanced privacy and applications in private stochastic gradient descent L Watson, B Rozemberczki, R Sarkar arXiv preprint arXiv:2006.14360, 2020 | 1 | 2020 |
Multi-task learning for sequence-to-sequence neural models of lemmatization L Watson Master’s thesis, University of Edinburgh, 2018 | 1 | 2018 |
Differentially Private Shapley Values for Data Evaluation L Watson, R Andreeva, HT Yang, R Sarkar arXiv preprint arXiv:2206.00511, 2022 | | 2022 |
Continual and Sliding Window Release for Private Empirical Risk Minimization L Watson, A Ghosh, B Rozemberczki, R Sarkar arXiv preprint arXiv:2203.03594, 2022 | | 2022 |
Privacy Preserving Detection of Path Bias Attacks in Tor L Watson, A Mediratta, T Elahi, R Sarkar Proceedings on Privacy Enhancing Technologies 2020 (4), 111-130, 2020 | | 2020 |