Graph neural networks for the prediction of infinite dilution activity coefficients EIS Medina, S Linke, M Stoll, K Sundmacher Digital Discovery 1 (3), 216-225, 2022 | 39 | 2022 |
Hybrid semi‐parametric modeling in separation processes: a review K McBride, EI Sanchez Medina, K Sundmacher Chemie Ingenieur Technik 92 (7), 842-855, 2020 | 38 | 2020 |
Impacts of antiscalants on the formation of calcium solids: Implication on scaling potential of desalination concentrate T Jain, E Sanchez, E Owens-Bennett, R Trussell, S Walker, H Liu Environmental Science: Water Research & Technology 5 (7), 1285-1294, 2019 | 37 | 2019 |
Gibbs–Helmholtz graph neural network: capturing the temperature dependency of activity coefficients at infinite dilution EIS Medina, S Linke, M Stoll, K Sundmacher Digital Discovery 2 (3), 781-798, 2023 | 14 | 2023 |
Understanding the dynamic behaviour of semicontinuous distillation PB Madabhushi, EIS Medina, TA Adams II Computer Aided Chemical Engineering 43, 845-850, 2018 | 9 | 2018 |
Gibbs–helmholtz graph neural network for the prediction of activity coefficients of polymer solutions at infinite dilution EI Sanchez Medina, S Kunchapu, K Sundmacher The Journal of Physical Chemistry A 127 (46), 9863-9873, 2023 | 5 | 2023 |
Solvent pre-selection for extractive distillation using Gibbs-Helmholtz Graph Neural Networks EIS Medina, K Sundmacher Computer Aided Chemical Engineering 52, 2037-2042, 2023 | 2 | 2023 |
Prediction of bioconcentration factors (bcf) using graph neural networks EIS Medina, S Linke, K Sundmacher Computer Aided Chemical Engineering 50, 991-997, 2021 | 2 | 2021 |
Acyclic modular flowsheet optimization using multiple trust regions and Gaussian process regression EIS Medina, DR Vallejo, B Chachuat, K Sundmacher, P Petsagkourakis, ... Computer Aided Chemical Engineering 50, 1117-1123, 2021 | 2 | 2021 |
Multi-Objective Bayesian optimization of process flowsheets using trust regions and quality set metrics. EI Sanchez Medina, DF Rodriguez-Vallejo, EA del Rio-Chanona, ... 2021 AIChE Annual Meeting, 2021 | 1 | 2021 |
Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading L König-Mattern, EIS Medina, AO Komarova, S Linke, ... Chemical Engineering Journal 495, 153524, 2024 | | 2024 |
Towards Digital Twins for Power-to-X: Comparing Surrogate Models for a Catalytic CO2 Methanation Reactor L Peterson, A Forootani, EIS Medina, IV Gosea, K Sundmacher, P Benner Authorea Preprints, 2024 | | 2024 |
Graph neural networks for CO2 solubility predictions in Deep Eutectic Solvents GH Morales, EIS Medina, A Jiménez-Gutiérrez, VM Zavala Computers & Chemical Engineering, 108750, 2024 | | 2024 |
Graph Neural Networks for CO2 Solubility Predictions in Deep Eutectic Solvents EIS Medina, GH Morales, A Jimenez-Gutierrez, VM Zavala | | 2024 |
A symbolic regression based methodology for the construction of interpretable and predictive thermodynamic models S Kay, EIS Medina, K Sundmacher, D Zhang Computer Aided Chemical Engineering 53, 2701-2706, 2024 | | 2024 |
Machine learning-based solvent screening for lignocellulose biorefineries and lignin upgrading L König-Mattern, EI Sanchez Medina, L Rihko-Struckmann, ... BioSPRINT Spring School: Opportunities and challenges of process …, 2024 | | 2024 |
An introductory course of machine learning for chemical engineering students: a prototype EI Sanchez Medina, C Ganzer, RC Antonio, O Matar, K Sundmacher WCCE11-11th WORLD CONGRESS OF CHEMICAL ENGINEERING, 2023 | | 2023 |
Tailored solvent design for lignin dissolution using graph neural networks L König-Mattern, EI Sanchez Medina, AO Komarova, S Linke, ... ECCE 14 & ECAB 7: 14th European Congress of Chemical Engineering and 7th …, 2023 | | 2023 |
Predicting activity coefficients at infinite dilution of polymer solutions using Graph Neural Networks EI Sanchez Medina, S Kunchapu, K Sundmacher WCCE11-11th WORLD CONGRESS OF CHEMICAL ENGINEERING, 2023 | | 2023 |
Predicting Activity Coefficients at Infinite Dilution Using Hybrid Residual Graph Neural Networks EIS Medina, S Linke, M Stoll, K Sundmacher 2022 AIChE Annual Meeting, 2022 | | 2022 |