Follow
Tom Brosch
Title
Cited by
Cited by
Year
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
T Brosch, LYW Tang, Y Yoo, DKB Li, A Traboulsee, R Tam
IEEE transactions on medical imaging 35 (5), 1229-1239, 2016
7022016
Manifold learning of brain MRIs by deep learning
T Brosch, R Tam, Alzheimer’s Disease Neuroimaging Initiative
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th …, 2013
3052013
Spinal cord grey matter segmentation challenge
F Prados, J Ashburner, C Blaiotta, T Brosch, J Carballido-Gamio, ...
Neuroimage 152, 312-329, 2017
1592017
Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls
Y Yoo, LYW Tang, T Brosch, DKB Li, S Kolind, I Vavasour, A Rauscher, ...
NeuroImage: Clinical 17, 169-178, 2018
1082018
Runtime packers: The hidden problem
T Brosch, M Morgenstern
Black Hat USA, 2006
842006
Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation
Y Yoo, T Brosch, A Traboulsee, DKB Li, R Tam
Machine Learning in Medical Imaging: 5th International Workshop, MLMI 2014 …, 2014
772014
Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images
T Brosch, R Tam
Neural computation 27 (1), 211-227, 2015
742015
Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning
T Brosch, Y Yoo, DKB Li, A Traboulsee, R Tam
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th …, 2014
722014
Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis
Y Yoo, LW Tang, T Brosch, DKB Li, L Metz, A Traboulsee, R Tam
Deep Learning and Data Labeling for Medical Applications: First …, 2016
572016
Correction of motion artifacts using a multiscale fully convolutional neural network
K Sommer, A Saalbach, T Brosch, C Hall, NM Cross, JB Andre
American Journal of Neuroradiology 41 (3), 416-423, 2020
522020
Foveal fully convolutional nets for multi-organ segmentation
T Brosch, A Saalbach
Medical imaging 2018: Image processing 10574, 198-206, 2018
462018
Deep learning-based boundary detection for model-based segmentation with application to MR prostate segmentation
T Brosch, J Peters, A Groth, T Stehle, J Weese
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018
432018
Iterative segmentation from limited training data: applications to congenital heart disease
DF Pace, AV Dalca, T Brosch, T Geva, AJ Powell, J Weese, MH Moghari, ...
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2018
352018
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
AI Iuga, H Carolus, AJ Höink, T Brosch, T Klinder, D Maintz, T Persigehl, ...
BMC Medical Imaging 21, 1-12, 2021
242021
Artificial intelligence-enabled localization of anatomical landmarks
F Wenzel, T Brosch
US Patent 11,475,559, 2022
222022
Correction of motion artifacts using a multi-resolution fully convolutional neural network
K Sommer, T Brosch, R Wiemker, T Harder, A Saalbach, CS Hall, ...
Proceedings of the ISMRM Scientific Meeting & Exhibition, Paris 1175, 2018
212018
Abdomen segmentation in 3D fetal ultrasound using CNN-powered deformable models
A Schmidt-Richberg, T Brosch, N Schadewaldt, T Klinder, A Cavallaro, ...
Fetal, Infant and Ophthalmic Medical Image Analysis: International Workshop …, 2017
142017
Automated abdominal plane and circumference estimation in 3D US for fetal screening
C Lorenz, T Brosch, C Ciofolo-Veit, T Klinder, T Lefevre, A Cavallaro, ...
Medical Imaging 2018: Image Processing 10574, 111-119, 2018
132018
FLAIR2 improves LesionTOADS automatic segmentation of multiple sclerosis lesions in non-homogenized, multi-center, 2D clinical magnetic resonance images
M Le, LYW Tang, E Hernández-Torres, M Jarrett, T Brosch, L Metz, DKB Li, ...
NeuroImage: Clinical 23, 101918, 2019
122019
Initiative for the Alzheimers Disease Neuroimaging
T Brosch, R Tam
Manifold learning of brain MRIs by deep learning. Med Image Comput Comput …, 2013
122013
The system can't perform the operation now. Try again later.
Articles 1–20