Assessing the accuracy of prediction algorithms for classification: an overview P Baldi, S Brunak, Y Chauvin, CAF Andersen, H Nielsen Bioinformatics 16 (5), 412-424, 2000 | 2495 | 2000 |
Backpropagation: theory, architectures, and applications Y Chauvin, DE Rumelhart Psychology press, 2013 | 910 | 2013 |
Backpropagation: The basic theory DE Rumelhart, R Durbin, R Golden, Y Chauvin Backpropagation: Theory, architectures and applications, 1-34, 1995 | 693 | 1995 |
Hidden Markov models of biological primary sequence information. P Baldi, Y Chauvin, T Hunkapiller, MA McClure Proceedings of the National Academy of Sciences 91 (3), 1059-1063, 1994 | 686 | 1994 |
A back-propagation algorithm with optimal use of hidden units Y Chauvin Advances in neural information processing systems 1, 1988 | 326 | 1988 |
The biology of eukaryotic promoter prediction—a review AG Pedersen, P Baldi, Y Chauvin, S Brunak Computers & chemistry 23 (3-4), 191-207, 1999 | 321 | 1999 |
Neural networks for fingerprint recognition P Baldi, Y Chauvin neural computation 5 (3), 402-418, 1993 | 238 | 1993 |
Smooth on-line learning algorithms for hidden Markov models P Baldi, Y Chauvin Neural Computation 6 (2), 307-318, 1994 | 201 | 1994 |
DNA structure in human RNA polymerase II promoters AG Pedersen, P Baldi, Y Chauvin, S Brunak Journal of molecular biology 281 (4), 663-673, 1998 | 113 | 1998 |
Characterization of prokaryotic and eukaryotic promoters using hidden Markov models. AG Pedersen, P Baldi, S Brunak, Y Chauvin Ismb 4 (1), 182-191, 1996 | 103 | 1996 |
Naturally occurring nucleosome positioning signals in human exons and introns P Baldi, S Brunak, Y Chauvin, A Krogh Journal of molecular biology 263 (4), 503-510, 1996 | 96 | 1996 |
Generalization performance of overtrained back-propagation networks Y Chauvin Neural Networks: EURASIP Workshop 1990 Sesimbra, Portugal, February 15–17 …, 1990 | 79 | 1990 |
Dynamic behavior of constained back-propagation networks Y Chauvin Advances in neural information processing systems 2, 1989 | 76 | 1989 |
Hybrid modeling, HMM/NN architectures, and protein applications P Baldi, Y Chauvin Neural Computation 8 (7), 1541-1565, 1996 | 72 | 1996 |
Temporal evolution of generalization during learning in linear networks P Baldi, Y Chauvin Neural Computation 3 (4), 589-603, 1991 | 69 | 1991 |
Principal component analysis by gradient descent on a constrained linear Hebbian cell Y Chauvin Proceedings of the joint international conference on neural networks, San …, 1989 | 61 | 1989 |
Hidden Markov models in molecular biology: new algorithms and applications P Baldi, Y Chauvin, T Hunkapiller, M McClure Advances in Neural Information Processing Systems 5, 1992 | 55 | 1992 |
Computational applications of DNA structural scales. P Baldi, S Brunak, Y Chauvin, AG Pedersen Ismb 6, 35-42, 1998 | 50 | 1998 |
Structural basis for triplet repeat disorders: a computational analysis P Baldi, S Brunak, Y Chauvin, A Gorm Pedersen Bioinformatics 15 (11), 918-929, 1999 | 39 | 1999 |
Hidden Markov models of the g-protein-coupled receptor family P Baldi, Y Chauvin Journal of computational Biology 1 (4), 311-336, 1994 | 39 | 1994 |