Follow
Jesse H. Krijthe
Title
Cited by
Cited by
Year
Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation
JH Krijthe
R package version 0.13, URL https://github. com/jkrijthe/Rtsne, 2015
441*2015
Measuring Parkinson's disease over time: the real‐world within‐subject reliability of the MDS‐UPDRS
LJW Evers, JH Krijthe, MJ Meinders, BR Bloem, TM Heskes
Movement Disorders 34 (10), 1480-1487, 2019
802019
Feature-level domain adaptation
WM Kouw, LJP Van Der Maaten, JH Krijthe, M Loog
The Journal of Machine Learning Research 17 (1), 5943-5974, 2016
612016
A brief prehistory of double descent
M Loog, T Viering, A Mey, JH Krijthe, DMJ Tax
Proceedings of the National Academy of Sciences 117 (20), 10625-10626, 2020
412020
Real-life gait performance as a digital biomarker for motor fluctuations: the Parkinson@ Home validation study
LJW Evers, YP Raykov, JH Krijthe, AL Silva de Lima, R Badawy, K Claes, ...
Journal of medical Internet research 22 (10), e19068, 2020
332020
Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics
E Taskesen, SMH Huisman, A Mahfouz, JH Krijthe, J De Ridder, ...
Scientific reports 6 (1), 24949, 2016
312016
Implicitly constrained semi-supervised least squares classification
JH Krijthe, M Loog
Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA …, 2015
252015
RSSL: Semi-supervised Learning in R
JH Krijthe
Reproducible Research in Pattern Recognition: First International Workshop …, 2017
212017
Implicitly Constrained Semi-Supervised Linear Discriminant Analysis
JH Krijthe, M Loog
Pattern Recognition (ICPR), 2014 22nd International Conference on, 3762-3767, 2014
202014
Projected estimators for robust semi-supervised classification
JH Krijthe, M Loog
Machine Learning 106, 993-1008, 2017
182017
Robust semi-supervised least squares classification by implicit constraints
JH Krijthe, M Loog
Pattern Recognition 63, 115-126, 2017
152017
On measuring and quantifying performance: error rates, surrogate loss, and an example in semi-supervised learning
M Loog, JH Krijthe, AC Jensen
Handbook of Pattern Recognition and Computer Vision, 53-68, 2016
132016
Improving cross-validation based classifier selection using meta-learning
JH Krijthe, TK Ho, M Loog
Proceedings of the 21st International Conference on Pattern Recognition …, 2012
122012
Autoencoding Credit Card Fraud
T Sweers, T Heskes, J Krijthe
Bachelor Thesis, 2018
112018
ReproducedPapers. org: Openly teaching and structuring machine learning reproducibility
B Yildiz, H Hung, JH Krijthe, CCS Liem, M Loog, G Migut, FA Oliehoek, ...
Reproducible Research in Pattern Recognition: Third International Workshop …, 2021
82021
Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function
ALLF Van der Kooi, M Van Dijk, L Broer, MH Van Den Berg, JSE Laven, ...
Human Reproduction 36 (4), 1120-1133, 2021
82021
Optimistic semi-supervised least squares classification
JH Krijthe, M Loog
2016 23rd International Conference on Pattern Recognition (ICPR), 1677-1682, 2016
72016
Effect of genetic variation in CYP450 on gonadal impairment in a European cohort of female childhood cancer survivors, based on a candidate gene approach: results from the …
MEM Van Der Perk, L Broer, Y Yasui, LL Robison, MM Hudson, ...
Cancers 13 (18), 4598, 2021
62021
Sex-specific patient journeys in early Parkinson's disease in the Netherlands
FP Vlaanderen, Y De Man, JH Krijthe, MAC Tanke, AS Groenewoud, ...
Frontiers in Neurology 10, 794, 2019
62019
The pessimistic limits and possibilities of margin-based losses in semi-supervised learning
J Krijthe, M Loog
Advances in Neural Information Processing Systems 31, 2018
62018
The system can't perform the operation now. Try again later.
Articles 1–20