Identifying the optimal set of attributes that impose high impact on the end results of a cricket match using machine learning P Somaskandhan, G Wijesinghe, LB Wijegunawardana, ... 2017 IEEE International Conference on Industrial and Information Systems …, 2017 | 20 | 2017 |
Multicentre sleep-stage scoring agreement in the Sleep Revolution project S Nikkonen, P Somaskandhan, H Korkalainen, S Kainulainen, PI Terrill, ... Journal of Sleep Research, e13956, 2023 | 18 | 2023 |
Deep Learning-Based Algorithm Accurately Classifies Sleep Stages in Preadolescent Children with Sleep-Disordered Breathing Symptoms and Age-Matched Controls P Somaskandhan, T Leppänen, PI Terrill, S Siguršardóttir, ES Arnardóttir, ... Frontiers in Neurology 14, 2023 | 5 | 2023 |
O004 Incorporating Arousals into Sleep vs. Wakefulness Classification Outperforms Traditional Binary Classification at 1-Second Epoch Resolution P Somaskandhan, H Korkalainen, T Leppänen, J Töyräs, K Melehan, ... Sleep Advances 5 (Supplement_1), A2-A3, 2024 | | 2024 |
Multi-channel frontal EEG–validation on manual sleep staging in a pediatric cohort S Sigurdardottir, H Pitkänen, H Korkalainen, S Kainulainen, M Serwatko, ... Sleep Medicine 115, 274, 2024 | | 2024 |
P113 A detailed analysis of multicentric sleep staging inter-rater variabilities P Somaskandhan, P Terrill, H Korkalainen, S Kainulainen, T Leppänen, ... Sleep Advances 3 (Supplement_1), A66-A66, 2022 | | 2022 |
P137 Deep learning enables accurate automatic sleep stage classification in a clinical paediatric population P Somaskandhan, H Korkalainen, P Terrill, S Siguršardóttir, E Arnardóttir, ... Sleep Advances 2 (Supplement_1), A66-A66, 2021 | | 2021 |