Follow
Irina Jurenka
Title
Cited by
Cited by
Year
beta-vae: Learning basic visual concepts with a constrained variational framework
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
International conference on learning representations, 2016
47552016
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
10842018
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
6912021
Monet: Unsupervised scene decomposition and representation
CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ...
arXiv preprint arXiv:1901.11390, 2019
4892019
Towards a definition of disentangled representations
I Higgins, D Amos, D Pfau, S Racaniere, L Matthey, D Rezende, ...
arXiv preprint arXiv:1812.02230, 2018
4802018
Darla: Improving zero-shot transfer in reinforcement learning
I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ...
International Conference on Machine Learning, 1480-1490, 2017
4722017
dSprites - Disentanglement testing Sprites dataset
L Matthey, I Higgins, D Hassabis, A Lercher
https://github.com/deepmind/dsprites-dataset, 2017
3752017
Hamiltonian generative networks
P Toth, DJ Rezende, A Jaegle, S Racanière, A Botev, I Higgins
arXiv preprint arXiv:1909.13789, 2019
2012019
Selection-inference: Exploiting large language models for interpretable logical reasoning
A Creswell, M Shanahan, I Higgins
arXiv preprint arXiv:2205.09712, 2022
1902022
Scan: Learning hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ...
arXiv preprint arXiv:1707.03389, 2017
1612017
Life-long disentangled representation learning with cross-domain latent homologies
A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ...
Advances in Neural Information Processing Systems 31, 2018
1332018
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
I Higgins, L Chang, V Langston, D Hassabis, C Summerfield, D Tsao, ...
Nature communications 12 (1), 6456, 2021
1132021
Cyprien de Masson d’Autume
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
782021
Unsupervised Model Selection for Variational Disentangled Representation Learning
S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ...
arXiv preprint arXiv:1905.12614, 2019
752019
Solving math word problems with process-and outcome-based feedback
J Uesato, N Kushman, R Kumar, F Song, N Siegel, L Wang, A Creswell, ...
arXiv preprint arXiv:2211.14275, 2022
632022
Equivariant hamiltonian flows
DJ Rezende, S Racanière, I Higgins, P Toth
arXiv preprint arXiv:1909.13739, 2019
582019
Symmetry-based representations for artificial and biological general intelligence
I Higgins, S Racanière, D Rezende
Frontiers in Computational Neuroscience 16, 836498, 2022
362022
Disentangling by subspace diffusion
D Pfau, I Higgins, A Botev, S Racanière
Advances in Neural Information Processing Systems 33, 17403-17415, 2020
282020
The Multi-Entity Variational Autoencoder
C Nash, A Eslami, CP Burgess, I Higgins, D Zoran, W Theophane, ...
http://charlienash.github.io/assets/docs/mevae2017.pdf, 2017
262017
Which priors matter? benchmarking models for learning latent dynamics
A Botev, A Jaegle, P Wirnsberger, D Hennes, I Higgins
arXiv preprint arXiv:2111.05458, 2021
232021
The system can't perform the operation now. Try again later.
Articles 1–20