Byol for audio: Self-supervised learning for general-purpose audio representation D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino 2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021 | 87 | 2021 |
ToyADMOS2: Another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions N Harada, D Niizumi, D Takeuchi, Y Ohishi, M Yasuda, S Saito arXiv preprint arXiv:2106.02369, 2021 | 84 | 2021 |
Description and discussion on DCASE 2021 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions Y Kawaguchi, K Imoto, Y Koizumi, N Harada, D Niizumi, K Dohi, ... arXiv preprint arXiv:2106.04492, 2021 | 68 | 2021 |
Description and discussion on DCASE 2022 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring applying domain generalization techniques K Dohi, K Imoto, N Harada, D Niizumi, Y Koizumi, T Nishida, H Purohit, ... arXiv preprint arXiv:2206.05876, 2022 | 41 | 2022 |
Acoustic scene classification: A competition review S Gharib, H Derrar, D Niizumi, T Senttula, J Tommola, T Heittola, ... 2018 IEEE 28th International Workshop on Machine Learning for Signal …, 2018 | 22 | 2018 |
Heating cooker D Niizumi US Patent 10,874,250, 2020 | 21 | 2020 |
Audio captioning using pre-trained large-scale language model guided by audio-based similar caption retrieval Y Koizumi, Y Ohishi, D Niizumi, D Takeuchi, M Yasuda arXiv preprint arXiv:2012.07331, 2020 | 20 | 2020 |
Masked spectrogram modeling using masked autoencoders for learning general-purpose audio representation D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino arXiv preprint arXiv:2204.12260, 2022 | 18 | 2022 |
Description and Discussion on DCASE 2021 Challenge Task 2: Unsupervised Anomalous Detection for Machine Condition Monitoring Under Domain Shifted Conditions. Y Kawaguchi, K Imoto, Y Koizumi, N Harada, D Niizumi, K Dohi, ... DCASE, 186-190, 2021 | 12 | 2021 |
BYOL for Audio: Exploring Pre-trained General-purpose Audio Representations D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino IEEE/ACM Transactions on Audio, Speech, and Language Processing 31, 137-151, 2022 | 10 | 2022 |
ConceptBeam: Concept Driven Target Speech Extraction Y Ohishi, M Delcroix, T Ochiai, S Araki, D Takeuchi, D Niizumi, A Kimura, ... Proceedings of the 30th ACM International Conference on Multimedia, 4252-4260, 2022 | 6 | 2022 |
Composing General Audio Representation by Fusing Multilayer Features of a Pre-trained Model D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino 2022 30th European Signal Processing Conference (EUSIPCO), 200-204, 2022 | 3 | 2022 |
Masked Modeling Duo: Learning Representations by Encouraging Both Networks to Model the Input D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023 | 1 | 2023 |
Masked Modeling Duo for Speech: Specializing General-Purpose Audio Representation to Speech using Denoising Distillation D Niizumi, D Takeuchi, Y Ohishi, N Harada, K Kashino arXiv preprint arXiv:2305.14079, 2023 | | 2023 |
Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring K Dohi, K Imoto, N Harada, D Niizumi, Y Koizumi, T Nishida, H Purohit, ... arXiv preprint arXiv:2305.07828, 2023 | | 2023 |
First-shot anomaly sound detection for machine condition monitoring: A domain generalization baseline N Harada, D Niizumi, Y Ohishi, D Takeuchi, M Yasuda arXiv preprint arXiv:2303.00455, 2023 | | 2023 |
Introducing Auxiliary Text Query-modifier to Content-based Audio Retrieval D Takeuchi, Y Ohishi, D Niizumi, N Harada, K Kashino arXiv preprint arXiv:2207.09732, 2022 | | 2022 |
The Morandi Room: Entering the World of Morandi’s Paintings Through Machine Learning X Zhang, D Niizumi Advances in Artificial Intelligence: Selected Papers from the Annual …, 2021 | | 2021 |
Heating cooker D Niizumi US Patent App. 17/036,640, 2021 | | 2021 |
The Morandi Room Entering the World of Morandi’s Paintings through Machine Learning S Kobayashi, R Kuwakubo, S Matsui, Y Otani, X Zhang, D Niizumi | | 2020 |