A novel dynamic PCA algorithm for dynamic data modeling and process monitoring Y Dong, SJ Qin Journal of Process Control 67, 1-11, 2018 | 421 | 2018 |
Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring SJ Qin, Y Dong, Q Zhu, J Wang, Q Liu Annual Reviews in Control 50, 29-48, 2020 | 116 | 2020 |
Regression on dynamic PLS structures for supervised learning of dynamic data Y Dong, SJ Qin Journal of process control 68, 64-72, 2018 | 111 | 2018 |
Dynamic latent variable analytics for process operations and control Y Dong, SJ Qin Computers & Chemical Engineering 114, 69-80, 2018 | 91 | 2018 |
Dynamic-inner partial least squares for dynamic data modeling Y Dong, SJ Qin IFAC-PapersOnLine 48 (8), 117-122, 2015 | 77 | 2015 |
Deep dynamic adaptive transfer network for rolling bearing fault diagnosis with considering cross-machine instance Y Zhou, Y Dong, H Zhou, G Tang IEEE Transactions on Instrumentation and Measurement 70, 1-11, 2021 | 63 | 2021 |
Efficient dynamic latent variable analysis for high-dimensional time series data Y Dong, Y Liu, SJ Qin IEEE Transactions on Industrial Informatics 16 (6), 4068-4076, 2019 | 54 | 2019 |
Dynamic latent variable regression for inferential sensor modeling and monitoring Q Zhu, SJ Qin, Y Dong Computers & Chemical Engineering 137, 106809, 2020 | 46 | 2020 |
Dynamic-inner canonical correlation and causality analysis for high dimensional time series data Y Dong, SJ Qin IFAC-PapersOnLine 51 (18), 476-481, 2018 | 42 | 2018 |
New dynamic predictive monitoring schemes based on dynamic latent variable models Y Dong, SJ Qin Industrial & Engineering Chemistry Research 59 (6), 2353-2365, 2020 | 32 | 2020 |
Data processing framework for data cleansing A Deshpande, Y Dong, G Li, Y Zheng, SZ Qin, LA Brenskelle US Patent App. 14/937,701, 2016 | 32 | 2016 |
PR-PL: A novel transfer learning framework with prototypical representation based pairwise learning for EEG-based emotion recognition R Zhou, Z Zhang, H Fu, L Zhang, L Li, G Huang, Y Dong, F Li, X Yang, ... arXiv preprint arXiv:2202.06509, 2022 | 24 | 2022 |
PR-PL: A novel prototypical representation based pairwise learning framework for emotion recognition using EEG signals R Zhou, Z Zhang, H Fu, L Zhang, L Li, G Huang, F Li, X Yang, Y Dong, ... IEEE Transactions on Affective Computing 15 (2), 657-670, 2023 | 22 | 2023 |
Limited fault data augmentation with compressed sensing for bearing fault diagnosis D Wang, Y Dong, H Wang, G Tang IEEE Sensors Journal 23 (13), 14499-14511, 2023 | 18 | 2023 |
Time-varying online transfer learning for intelligent bearing fault diagnosis with incomplete unlabeled target data Y Zhou, Y Dong, G Tang IEEE Transactions on Industrial Informatics 19 (6), 7733-7741, 2022 | 14 | 2022 |
Extracting a low-dimensional predictable time series Y Dong, SJ Qin, SP Boyd Optimization and Engineering, 1-26, 2021 | 14 | 2021 |
Plant-wide troubleshooting and diagnosis using dynamic embedded latent feature analysis SJ Qin, Y Liu, Y Dong Computers & Chemical Engineering 152, 107392, 2021 | 11 | 2021 |
A machine learning framework to predict the tensile stress of natural rubber: Based on molecular dynamics simulation data Y Huang, Q Chen, Z Zhang, K Gao, A Hu, Y Dong, J Liu, L Cui Polymers 14 (9), 1897, 2022 | 9 | 2022 |
Low rank forecasting S Barratt, Y Dong, S Boyd arXiv preprint arXiv:2101.12414, 2021 | 8 | 2021 |
Dynamic-inner canonical correlation analysis based process monitoring Y Dong, SJ Qin 2020 American Control Conference (ACC), 3553-3558, 2020 | 7 | 2020 |