Follow
Lucas Liebenwein
Title
Cited by
Cited by
Year
Provable Filter Pruning for Efficient Neural Networks
L Liebenwein*, C Baykal*, H Lang, D Feldman, D Rus
International Conference on Learning Representations, 2020
1932020
Closed-form continuous-time neural networks
R Hasani, M Lechner, A Amini, L Liebenwein, A Ray, M Tschaikowski, ...
Nature Machine Intelligence 4 (11), 992-1003, 2022
109*2022
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
C Baykal*, L Liebenwein*, I Gilitschenski, D Feldman, D Rus
International Conference on Learning Representations, 2019
952019
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
L Liebenwein, C Baykal, B Carter, D Gifford, D Rus
Proceedings of Machine Learning and Systems (MLSys 2021), 2021
812021
Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition
L Liebenwein, A Maalouf, D Feldman, D Rus
Advances in Neural Information Processing Systems 34, 2021
472021
Deep Latent Competition: Learning to Race Using Visual Control Policies in Latent Space
W Schwarting*, T Seyde*, I Gilitschenski*, L Liebenwein, R Sander, ...
Conference on Robot Learning (CoRL), 2020
382020
Sensitivity-Informed Provable Pruning of Neural Networks
C Baykal*, L Liebenwein*, I Gilitschenski, D Feldman, D Rus
SIAM Journal on Mathematics of Data Science 4 (1), 26-45, 2022
332022
Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees
L Liebenwein*, C Baykal*, I Gilitschenski, S Karaman, D Rus
Robotics: Science and Systems XIV (RSS), 2018
292018
Compositional and Contract-based Verification for Autonomous Driving on Road Networks
L Liebenwein, W Schwarting, CI Vasile, J DeCastro, J Alonso-Mora, ...
Robotics Research: The 18th International Symposium ISRR, 2018
242018
Counterexample-guided safety contracts for autonomous driving
J DeCastro*, L Liebenwein*, CI Vasile, R Tedrake, S Karaman, D Rus
International Workshop on the Algorithmic Foundations of Robotics, 2018
222018
Machine Learning-based Estimation of Forest Carbon Stocks to increase Transparency of Forest Preservation Efforts
B Lütjens, L Liebenwein, K Kramer
arXiv preprint arXiv:1912.07850, 2019
202019
Sparse flows: Pruning continuous-depth models
L Liebenwein, R Hasani, A Amini, D Rus
Advances in Neural Information Processing Systems 34, 22628-22642, 2021
162021
Training Support Vector Machines using Coresets
C Baykal, L Liebenwein, W Schwarting
arXiv preprint arXiv:1708.03835, 2017
72017
Low-Regret Active learning
C Baykal, L Liebenwein, D Feldman, D Rus
arXiv preprint arXiv:2104.02822, 2021
42021
Publisher Correction: Closed-form continuous-time neural networks
R Hasani, M Lechner, A Amini, L Liebenwein, A Ray, M Tschaikowski, ...
Nature Machine Intelligence 4 (12), 1267-1267, 2022
12022
Pruning by Active Attention Manipulation
Z Babaiee, L Liebenwein, R Hasani, D Rus, R Grosu
arXiv preprint arXiv:2210.11114, 2022
1*2022
Contract-based safety verification for autonomous driving
L Liebenwein
Massachusetts Institute of Technology, 2018
12018
Closed-form continuous-time neural networks (vol 4, pg 994, 2022)
R Hasani, M Lechner, A Amini, L Liebenwein, A Ray, M Tschaikowski, ...
NATURE MACHINE INTELLIGENCE 4 (12), 1267-1267, 2022
2022
Efficient Deep Learning: From Theory to Practice
L Liebenwein
Massachusetts Institute of Technology, 2021
2021
SYSTEM AND METHOD OF VALIDATION OF OPERATIONAL REGULATIONS TO AUTONOMOUSLY OPERATE A VEHICLE DURING TRAVEL
J Decastro, L Liebenwein, C Vasile, RL Tedrake, S Karaman, D Rus
US Patent App. 16/539,772, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–20