Follow
Yatao A. Bian
Title
Cited by
Cited by
Year
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Y Rong*, Y Bian*, T Xu, W Xie, Y Wei, W Huang, J Huang
Advances in Neural Information Processing Systems 33, 2020
7482020
Guarantees for Greedy Maximization of Non-submodular Functions with Applications
AA Bian, JM Buhmann, A Krause, S Tschiatschek
ICML 2017, 2017
2852017
Guaranteed non-convex optimization: Submodular maximization over continuous domains
AA Bian, B Mirzasoleiman, JM Buhmann, A Krause
AISTATS 2017, 2017
1692017
Graph Information Bottleneck for Subgraph Recognition
J Yu, T Xu, Y Rong, Y Bian, J Huang, R He
ICLR 2021, 2020
1632020
Independent SE (3)-Equivariant Models for End-to-End Rigid Protein Docking
OE Ganea, X Huang, C Bunne, Y Bian, R Barzilay, T Jaakkola, A Krause
ICLR 2022 Spotlight, 2021
1592021
CoLa: Communication-Efficient Decentralized Linear Learning
L He*, A Bian*, M Jaggi
NeurIPS 2018, 2018
153*2018
Transformer for graphs: An overview from architecture perspective
E Min, R Chen, Y Bian, T Xu, K Zhao, W Huang, P Zhao, J Huang, ...
arXiv preprint arXiv:2202.08455, 2022
1412022
Cross-dependent graph neural networks for molecular property prediction
H Ma, Y Bian, Y Rong, W Huang, T Xu, W Xie, G Ye, J Huang
Bioinformatics 38 (7), 2003-2009, 2022
115*2022
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs
Y Chen, Y Zhang, Y Bian, H Yang, K Ma, B Xie, T Liu, B Han, J Cheng
NeurIPS 2022 Spotlight, 2022
1142022
Continuous DR-submodular Maximization: Structure and Algorithms
A Bian, K Levy, A Krause, JM Buhmann
NIPS 2017, 486-496, 2017
1072017
DrugOOD: Out-of-Distribution Dataset Curator and Benchmark for AI-aided Drug Discovery--A Focus on Affinity Prediction Problems with Noise Annotations
Y Ji, L Zhang, J Wu, B Wu, L Li, LK Huang, T Xu, Y Rong, J Ren, D Xue, ...
DataPerf Workshop at ICML 2022, 2022
93*2022
Divide-and-conquer: Post-user interaction network for fake news detection on social media
E Min, Y Rong, Y Bian, T Xu, P Zhao, J Huang, S Ananiadou
Proceedings of the ACM web conference 2022, 1148-1158, 2022
682022
Pareto invariant risk minimization: Towards mitigating the optimization dilemma in out-of-distribution generalization
Y Chen, K Zhou, Y Bian, B Xie, B Wu, Y Zhang, K Ma, H Yang, P Zhao, ...
arXiv preprint arXiv:2206.07766, 2022
512022
Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference
YA Bian, JM Buhmann, A Krause
ICML, 644-653, 2019
50*2019
Recognizing Predictive Substructures with Subgraph Information Bottleneck
J Yu, T Xu, Y Rong, Y Bian, J Huang, R He
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
472021
Fairness-guided few-shot prompting for large language models
H Ma, C Zhang, Y Bian, L Liu, Z Zhang, P Zhao, S Zhang, H Fu, Q Hu, ...
Advances in Neural Information Processing Systems 36, 43136-43155, 2023
452023
On Self-Distilling Graph Neural Network
Y Chen, Y Bian, X Xiao, Y Rong, T Xu, J Huang
IJCAI 2021, 2020
452020
Not all low-pass filters are robust in graph convolutional networks
H Chang, Y Rong, T Xu, Y Bian, S Zhou, X Wang, J Huang, W Zhu
Advances in Neural Information Processing Systems 34, 25058-25071, 2021
442021
Simplifying and empowering transformers for large-graph representations
Q Wu, W Zhao, C Yang, H Zhang, F Nie, H Jiang, Y Bian, J Yan
Advances in Neural Information Processing Systems 36, 2023
432023
Beef: Bi-compatible class-incremental learning via energy-based expansion and fusion
FY Wang, DW Zhou, L Liu, HJ Ye, Y Bian, DC Zhan, P Zhao
The eleventh international conference on learning representations, 2022
422022
The system can't perform the operation now. Try again later.
Articles 1–20