Lingbing Guo
Lingbing Guo
Verified email at - Homepage
Cited by
Cited by
Learning to exploit long-term relational dependencies in knowledge graphs
L Guo, Z Sun, W Hu
International conference on machine learning, 2505-2514, 2019
Multi-view knowledge graph embedding for entity alignment
Q Zhang, Z Sun, W Hu, M Chen, L Guo, Y Qu
arXiv preprint arXiv:1906.02390, 2019
Transedge: Translating relation-contextualized embeddings for knowledge graphs
Z Sun, J Huang, W Hu, M Chen, L Guo, Y Qu
The Semantic Web–ISWC 2019: 18th International Semantic Web Conference …, 2019
Re-evaluating embedding-based knowledge graph completion methods
F Akrami, L Guo, W Hu, C Li
Proceedings of the 27th ACM international conference on information and …, 2018
DSKG: A deep sequential model for knowledge graph completion
L Guo, Q Zhang, W Ge, W Hu, Y Qu
Knowledge Graph and Semantic Computing. Knowledge Computing and Language …, 2019
Meaformer: Multi-modal entity alignment transformer for meta modality hybrid
Z Chen, J Chen, W Zhang, L Guo, Y Fang, Y Huang, Y Zhang, Y Geng, ...
Proceedings of the 31st ACM International Conference on Multimedia, 3317-3327, 2023
Decentralized knowledge graph representation learning
L Guo, W Wang, Z Sun, C Liu, W Hu
arXiv preprint arXiv:2010.08114, 2020
Understanding and improving knowledge graph embedding for entity alignment
L Guo, Q Zhang, Z Sun, M Chen, W Hu, H Chen
International Conference on Machine Learning, 8145-8156, 2022
Learning to complete knowledge graphs with deep sequential models
L Guo, Q Zhang, W Hu, Z Sun, Y Qu
Data Intelligence 1 (3), 289-308, 2019
Rethinking uncertainly missing and ambiguous visual modality in multi-modal entity alignment
Z Chen, L Guo, Y Fang, Y Zhang, J Chen, JZ Pan, Y Li, H Chen, W Zhang
International Semantic Web Conference, 121-139, 2023
Deep reinforcement learning for entity alignment
L Guo, Y Han, Q Zhang, H Chen
arXiv preprint arXiv:2203.03315, 2022
Domain-agnostic molecular generation with self-feedback
Y Fang, N Zhang, Z Chen, L Guo, X Fan, H Chen
The Twelfth International Conference on Learning Representations, 2023
Recurrent skipping networks for entity alignment
L Guo, Z Sun, E Cao, W Hu
arXiv preprint arXiv:1811.02318, 2018
Unleashing the power of transformer for graphs
L Guo, Q Zhang, H Chen
arXiv preprint arXiv:2202.10581, 2022
Revisit and Outstrip Entity Alignment: A Perspective of Generative Models
L Guo, Z Chen, J Chen, H Chen
arXiv preprint arXiv:2305.14651, 2023
Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey
Z Chen, Y Zhang, Y Fang, Y Geng, L Guo, X Chen, Q Li, W Zhang, J Chen, ...
arXiv preprint arXiv:2402.05391, 2024
Universal Multi-modal Entity Alignment via Iteratively Fusing Modality Similarity Paths
B Zhu, X Liu, X Mao, Z Chen, L Guo, T Gui, Q Zhang
arXiv preprint arXiv:2310.05364, 2023
Principled Representation Learning for Entity Alignment
L Guo, Z Sun, M Chen, W Hu, Q Zhang, H Chen
arXiv preprint arXiv:2110.10871, 2021
ASGEA: Exploiting Logic Rules from Align-Subgraphs for Entity Alignment
Y Luo, Z Chen, L Guo, Q Li, W Zeng, Z Cai, J Li
arXiv preprint arXiv:2402.11000, 2024
Newton–Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems
L Guo, W Wang, Z Chen, N Zhang, Z Sun, Y Lai, Q Zhang, H Chen
Advances in Neural Information Processing Systems 36, 2024
The system can't perform the operation now. Try again later.
Articles 1–20