Follow
Vincent Dutordoir
Title
Cited by
Cited by
Year
A framework for interdomain and multioutput Gaussian processes
M Van der Wilk, V Dutordoir, ST John, A Artemev, V Adam, J Hensman
arXiv preprint arXiv:2003.01115, 2020
772020
Gaussian process conditional density estimation
V Dutordoir, H Salimbeni, J Hensman, M Deisenroth
Advances in Neural Information Processing Systems, NeurIPS, 2385-2395, 2018
512018
Sparse Gaussian processes with spherical harmonic features
V Dutordoir, N Durrande, J Hensman
International Conference on Machine Learning, 2793-2802, 2020
432020
Deep Gaussian Processes with Importance-Weighted Variational Inference
H Salimbeni, V Dutordoir, J Hensman, MP Deisenroth
International Conference on Machine Learning, ICML, 2019
432019
Bayesian image classification with deep convolutional Gaussian processes
V Dutordoir, M Wilk, A Artemev, J Hensman
International Conference on Artificial Intelligence and Statistics, 1529-1539, 2020
33*2020
Scalable Thompson sampling using sparse Gaussian process models
S Vakili, H Moss, A Artemev, V Dutordoir, V Picheny
Advances in neural information processing systems 34, 5631-5643, 2021
302021
A tutorial on sparse Gaussian processes and variational inference
F Leibfried, V Dutordoir, ST John, N Durrande
arXiv preprint arXiv:2012.13962, 2020
272020
Deep neural networks as point estimates for deep Gaussian processes
V Dutordoir, J Hensman, M van der Wilk, CH Ek, Z Ghahramani, ...
Advances in Neural Information Processing Systems 34, 9443-9455, 2021
192021
GPflux: A library for deep Gaussian processes
V Dutordoir, H Salimbeni, E Hambro, J McLeod, F Leibfried, A Artemev, ...
arXiv preprint arXiv:2104.05674, 2021
172021
Neural diffusion processes
V Dutordoir, A Saul, Z Ghahramani, F Simpson
arXiv preprint arXiv:2206.03992, 2022
72022
Deep gaussian process metamodeling of sequentially sampled non-stationary response surfaces
V Dutordoir, N Knudde, J van der Herten, I Couckuyt, T Dhaene
Winter Simulation Conference, 134, 2017
72017
Hierarchical gaussian process models for improved metamodeling
N Knudde, V Dutordoir, JVD Herten, I Couckuyt, T Dhaene
ACM Transactions on Modeling and Computer Simulation (TOMACS) 30 (4), 1-17, 2020
42020
Efficient computational inference using gaussian processes
V Dutordoir, J Hensman, N Durrande
US Patent 11,027,743, 2021
12021
Automatic tuning of stochastic gradient descent with bayesian optimisation
V Picheny, V Dutordoir, A Artemev, N Durrande
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021
12021
Method and system for classification of data
J Hensman, M VAN DER WILK, V Dutordoir
US Patent 10,733,483, 2020
12020
Non-Stationary Surrogate Modeling with Deep Gaussian.”
V Dutordoir
12017
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
LC Tiao, V Dutordoir, V Picheny
arXiv preprint arXiv:2304.14034, 2023
2023
Memory-Based Meta-Learning on Non-Stationary Distributions
T Genewein, G Delétang, A Ruoss, LK Wenliang, E Catt, V Dutordoir, ...
arXiv preprint arXiv:2302.03067, 2023
2023
Efficient computational inference using gaussian processes
V Dutordoir, J Hensman, N Durrande
US Patent App. 17/338,158, 2021
2021
Surrogate modeling with sequential design for design and analysis of electronic systems
J van der Herten, V Dutordoir, I Couckuyt, T Dhaene
2017 International Conference on Electromagnetics in Advanced Applications …, 2017
2017
The system can't perform the operation now. Try again later.
Articles 1–20