Follow
Denis Krompass
Denis Krompass
Verified email at siemens.com
Title
Cited by
Cited by
Year
A large-scale evaluation of computational protein function prediction
P Radivojac, WT Clark, TR Oron, AM Schnoes, T Wittkop, A Sokolov, ...
Nature methods 10 (3), 221-227, 2013
10152013
Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood
SA Berger, D Krompass, A Stamatakis
Systematic biology 60 (3), 291-302, 2011
4992011
Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice
AJ Aberer, D Krompass, A Stamatakis
Systematic biology 62 (1), 162-166, 2013
3762013
Type-constrained representation learning in knowledge graphs
D Krompaß, S Baier, V Tresp
The Semantic Web-ISWC 2015: 14th International Semantic Web Conference …, 2015
2542015
Tensor-train recurrent neural networks for video classification
Y Yang, D Krompass, V Tresp
International Conference on Machine Learning, 3891-3900, 2017
2502017
Homology-based inference sets the bar high for protein function prediction
T Hamp, R Kassner, S Seemayer, E Vicedo, C Schaefer, D Achten, F Auer, ...
BMC bioinformatics 14, 1-10, 2013
592013
Predicting sequences of clinical events by using a personalized temporal latent embedding model
C Esteban, D Schmidt, D Krompaß, V Tresp
2015 International conference on healthcare informatics, 130-139, 2015
542015
Predicting sequences of clinical events by using a personalized temporal latent embedding model
C Esteban, D Schmidt, D Krompaß, V Tresp
2015 International conference on healthcare informatics, 130-139, 2015
542015
Predicting the co-evolution of event and knowledge graphs
C Esteban, V Tresp, Y Yang, S Baier, D Krompaß
2016 19th International Conference on Information Fusion (FUSION), 98-105, 2016
502016
Non-negative tensor factorization with rescal
D Krompaß, M Nickel, X Jiang, V Tresp
Tensor Methods for Machine Learning, ECML workshop, 1-10, 2013
502013
Few-shot one-class classification via meta-learning
A Frikha, D Krompaß, HG Köpken, V Tresp
Proceedings of the AAAI Conference on Artificial Intelligence 35 (8), 7448-7456, 2021
412021
Querying factorized probabilistic triple databases
D Krompaß, M Nickel, V Tresp
The Semantic Web–ISWC 2014: 13th International Semantic Web Conference, Riva …, 2014
382014
Learning with memory embeddings
V Tresp, C Esteban, Y Yang, S Baier, D Krompaß
arXiv preprint arXiv:1511.07972, 2015
302015
RogueNaRok: An efficient and exact algorithm for rogue taxon identification
AJ Aberer, D Krompaß, A Stamatakis
Heidelberg Institute for Theoretical Studies: Exelixis-RRDR-2011–10, 2011
292011
Large-scale factorization of type-constrained multi-relational data
D Krompaß, M Nickel, V Tresp
2014 International Conference on Data Science and Advanced Analytics (DSAA …, 2014
272014
Exploiting latent embeddings of nominal clinical data for predicting hospital readmission
D Krompaß, C Esteban, V Tresp, M Sedlmayr, T Ganslandt
KI-Künstliche Intelligenz 29, 153-159, 2015
242015
Ensemble solutions for link-prediction in knowledge graphs
D Krompaß, V Tresp
PKDD ECML 2nd Workshop on Linked Data for Knowledge Discovery, 2015
132015
Towards data-free domain generalization
A Frikha, H Chen, D Krompaß, T Runkler, V Tresp
Asian Conference on Machine Learning, 327-342, 2023
122023
Towards a new science of a clinical data intelligence
V Tresp, S Zillner, MJ Costa, Y Huang, A Cavallaro, PA Fasching, A Reis, ...
arXiv preprint arXiv:1311.4180, 2013
82013
Probabilistic latent-factor database models
D Krompaß, X Jiang, M Nickel, V Tresp
Linked Data for Knowledge Discovery, 74, 2014
62014
The system can't perform the operation now. Try again later.
Articles 1–20