Follow
Joris Pelemans
Joris Pelemans
Doctoral Researcher in Speech Recognition, KU Leuven
Verified email at esat.kuleuven.be
Title
Cited by
Cited by
Year
Character-word LSTM language models
L Verwimp, J Pelemans, P Wambacq
arXiv preprint arXiv:1704.02813, 2017
532017
Sparse non-negative matrix language modeling for skip-grams
N Shazeer, J Pelemans, C Chelba
Proceedings Interspeech 2015 2015, 1428-1432, 2015
282015
Skip-gram language modeling using sparse non-negative matrix probability estimation
N Shazeer, J Pelemans, C Chelba
arXiv preprint arXiv:1412.1454, 2014
142014
Automatic assessment of children's reading with the FLaVoR decoding using a phone confusion model
E Yilmaz, J Pelemans
Proceedings Interspeech 2014, 969-972, 2014
132014
A comparison of different punctuation prediction approaches in a translation context
V Vandeghinste, L Verwimp, J Pelemans, P Wambacq
Proceedings of the 21st Annual Conference of the European Association for …, 2018
92018
Smart Computer Aided Translation Environment
V Vandeghinste, T Vanallemeersch, F Van Eynde, G Heyman, MF Moens, ...
Annual conference of the European Association for Machine Translation-EAMT …, 2015
92015
Improving the translation environment for professional translators
V Vandeghinste, T Vanallemeersch, L Augustinus, B Bulté, F Van Eynde, ...
Informatics 6 (2), 24, 2019
82019
Analyzing the contribution of top-down lexical and bottom-up acoustic cues in the detection of sentence prominence
S Kakouros, J Pelemans, L Verwimp, P Wambacq, O Räsänen
Proceedings Interspeech 2016 8, 1074-1078, 2016
82016
Sparse non-negative matrix language modeling
J Pelemans, N Shazeer, C Chelba
Transactions of the Association for Computational Linguistics 4, 329-342, 2016
72016
Pruning sparse non-negative matrix n-gram language models
J Pelemans, N Shazeer, C Chelba
Proceedings Interspeech 2015 2015, 1433-1437, 2015
72015
Coping with language data sparsity: Semantic head mapping of compound words
J Pelemans, K Demuynck, P Wambacq
2014 IEEE International Conference on Acoustics, Speech and Signal …, 2014
62014
Efficient language model adaptation for automatic speech recognition of spoken translations
J Pelemans, T Vanallemeersch, K Demuynck, P Wambacq
Proceedings Interspeech 2015 2015, 2262-2266, 2015
52015
A layered approach for dutch large vocabulary continuous speech recognition
J Pelemans, K Demuynck, P Wambacq
2012 IEEE international conference on acoustics, speech and signal …, 2012
52012
Dutch automatic speech recognition on the web: Towards a general purpose system
J Pelemans, K Demuynck, P Wambacq
Proceedings Interspeech 2012 3, 2121-2124, 2012
52012
Language model adaptation for ASR of spoken translations using phrase-based translation models and named entity models
J Pelemans, T Vanallemeersch, K Demuynck, L Verwimp, P Wambacq
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
42016
STON efficient subtitling in Dutch using state-of-the-art tools
L Verwimp, B Desplanques, K Demuynck, J Pelemans, M Lycke, ...
17th Annual Conference of the International-Speech-Communication-Association …, 2016
42016
Integrating meta-information into recurrent neural network language models
Y Shi, M Larson, J Pelemans, CM Jonker, P Wambacq, P Wiggers, ...
Speech Communication 73, 64-80, 2015
42015
Information-weighted neural cache language models for asr
L Verwimp, J Pelemans, P Wambacq
2018 IEEE Spoken Language Technology Workshop (SLT), 756-762, 2018
32018
Smart Computer-Aided Translation Environment (SCATE): Highlights (. pdf)
V Vandeghinste, T Vanallemeersch, B Bulté, L Augustinus, F Van Eynde, ...
32018
Domain adaptation for LSTM language models
W Boes, R Van Rompaey, J Pelemans, L Verwimp, P Wambacq
Book of abstracts CLIN27, 57, 2017
32017
The system can't perform the operation now. Try again later.
Articles 1–20